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1. Introduction and Summary

There are at least three separate approaches to testing hypotheses

based on ranks in the linear model. Three of these methodologies, scattered

through the literature, are described by McKean and Hettmansperger (1976),

Sen and Puri (1977) and Adichie (1978). In addition, we will introduce a

fourth approach in this paper based on a suggestion of Bickel (1976) in

the context of H-estimation. All of these tests have the same approximating

distribution under the null hypothesis and the same asymptotic efficiency.

Other than to note the asymptotic similarities there has been no previous

attempt to study the similarities and differences among these tests for

small to moderate sample sizes. In particular, there have been no sugges-

tions for users on which of these methods is the more practical. Recommen-

dations on the implementation of these methods can be found at the end of

Section 5.

In Sections 2 through 4 we provide a unified discussion of all four

tests in the context of the geometry of the linear model. By considering

the geometry of the statistics we can quite easily describe differences

and similarities in the tests. In addition to providing a comparison of

the rank tests, the geometry suggests a comparison with the classical

F-test. There are three algebraically equivalent forms of the F statistic

and the rank tests can be identified with these different forms. The rank

tests, however, are not algebraically equivalent and this is one source of

their small sample differences. For an excellent account of the geometry

of the linear model, see Arnold (1981).
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In Section 5 we investigate in a Monte Carlo study the small sample

levels and powers of these tests along with the F-test. The study in-

cludes several designs and error distributions. On t he basis of this

study we conclude that some of the tests seem to be unusually sensitive

to the design and to the error structure.

The new approach to testing described here is based on Bickel's (1976)

idea of pseudo-observations. The pseudo-observations are constructed from

rank estimates of the parameters in the linear model in such a way that

the F-test calculated from these pseudo-observations is a normalized

quadratic form in the rank estimates which can be used to carry out hypo-

thesis tests. A plot of the pseudo-observations versus the data

illustrates the effect which robust methods have on the observations.

This plot is included with the example in Section 7.

Both rank and signed rank tests can be constructed and this may be

a source of some confusion. Although they differ numerically, their

asymptotic theory is the same. To avoid more notation we present only

the signed rank versions. If, in the formulas for each test described

in Section 3, we replace the signed rank score of the absolute value of

the residual (defined under 2.8) by the centered rank score of the

regular residual and replace the design matrix by the mean centered

design matrix we have the corresponding rank score version of the test.

In the case of rank scores the intercept parameter is handled separately.

One estimate of the intercept is a location estimate computed from the

residuals. McKean and Hettmansperger (1976) and Sen and Puni (1977)

discuss only the rank score tests while Adichie (1978) discusses both
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rank and signed rank score tests. The Monte Carlo study includes

both types in order that their small sample behavior can be compared.

A final note needed for Sections 2 and 3 concerns estimability.

In this paper, a function, X'8, of regression parameters is estimable

provided X lies in the row space of the design matrix; see McKean and

Schrader (1980) for a discussion of estimability in terms of robust

estimation.

*1
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2. Estimation in the Linear Model

2.1 Notation and Assumptions

Let Y denote an n X 1 vector of observations. Assume it follows

the linear model

Y = XO + e (2.1)

where X is an n x r matrix of known constants, 6 is an unknown r x 1 vector

of parameters, and e is an n x 1 vector of iid random errors, symmetrically

distributed about 0 with density function f(x). Let Q denote the subspace

of Rn which is spanned by the columns of X. Assume the dimension of 0 is

p < r. Then alternately we can write the model (2.1) as

Y = 6 + e, 6 e 0. (2.2)

When expectations exist EY - 6; in any case, Y is symmetrically distri-

buted about 8.

For vectors y, z E Rn let <y, z> denote the usual inner product;

so <y, z> = Zyiz i . Two vectors are orthogonal when their inner product is

0. Let SP denote the orthogonal complement of 2, the collection

n
of vectors in R which are orthogonal to all vectors in 0.

y~ ~LS1/2Denote the usual Euclidean norm by I =Yl ILS = <Y, y>2. Least

squares procedures are then based on this norm. Procedures based on ranks

use another norm which involves a set of scoreb a(l), ... , a(n). These

are often generated by a non-negative, non-decreasing, square integrable

function O(u), 0 < u < 1, by setting a(i) - 0(i/(n+l)). Without loss of

generality, f02 _ I. Scores that are frequently used are the sign scores,

(u) - 1, and the Wilcoxon scores, O(u) 31/2u. Let Rlyij denote the

rank of yiI among lyll, ... lyn ; then for a given set of scores
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the function on Rn defined by

lylR - <a(RlyI), lyl> (2.3)

" -a(RlYil) lYil

is a norm on Rn; see McKean and Schrader (1980). Note that for sign scores,

I llR is the Ll-norm. In general we refer to (2.3) as the weighted

least absolute deviation norm (WLAD-norm), and the weights depend on the

size of the absolute residuals.

2.2 Prediction and Estimation

Let j1'11 represent any norm on Rn. A prediction of Y or estimate

of 8 is defined as a point 0 in Q closest to y, that is, 6 satisfies

l IY - 611 - min ljy - ell, e 2. (2.4)

Such a point always exists. For the Euclidean norm '1"1[LS' ; is the least

squares projection of y onto Q which we will denote by eLS* For the norm

11'1IR' we will call 6 a best rank or R-prediction of Y and denote it by

eR* Computation of predictions is discussed in Section 4.

When the gradient VI y - X611 exists, e X6 is determined by the

equat ion

Vily - Xill 0. (2.5)

In the case of least squares (2.5) represents the linear normal equations

-2X'(y - Xa) - 0
A -

which, in the full rank case, results in the estimate 8LS w (X'X) x'y.

Note that the least squares residual vector is orthogonal to Q, i.e.

(y - ;LS) £ i. (2.7)

In the case of the weighted least absolute deviations norm the gradient

exists at all but a finite number of points. The corresponding non-linear

equation is

- II*fk
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V11y - Xa1IR -x' a+(Ry - XaI) - 0 (2.8)

where a+(Rlyi - 01) - a(Ryi -a sgn (y - ) for i 1, ... , n.

From (2.8) it follows that a best R-prediction is determindd so that

the vector of signed rank residuals a+(Rly - eRj) is orthogonal to Q, i.e.

a (Rly - eRI) e a.'. (2.9)

For the R-estimates, the minimum distance of y to Q, IlY - 41IR "a

unique. Although the WLAD-estimate is not unique, under regularity con-

ditions the diameter of the solution set tends to 0 in probability quite

rapidly, see Jaeckel (1972).

The gradient (2.8) consists of signed rank statistics appropriate for

testing the various components of a. The gradient equation yields estimates

which can be considered as extensions of the rank estimates of location

proposed by Hodges and Lehmann (1963). If 4(u) = 31/2u and X is the

vector of n ones then (2.8) becomes the Wilcoxon signed rank statistic

and S is the median of the n(n + 1)/2 pairwise averages of the observations.

A motivation for replacing the LS norm with the WLAD norm is that the

influence of an aberrant y point is bounded in the case of iR and unbounded

in the case of LS. This type of robustness is discussed by Hampel (1974)

and does not extend to protection against aberrant design points. Another

motivation is the increased estimation efficiency discussed next.

2.3 Asymptotic Theory for Estimation

For the full rank case, under suitable regularity conditions (see

Huber (1973), Jaeckel (1972), Jureckova (1971), Kraft and Van Eeden (1972))

the estimates S derived from the LS or WLAD norms are approximately normally

distributed as
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8 'MVN(0, K2 (XIX)-). (2.10)

For least squares K a , the variance of the error distribution. For

the WLAD estimate K2 T T2 where

T - 0  (u) F-1 ({2-1(u + 1)})]/f[F- ({21 (u + 1)})]du. (2.11)

Following Bickel (1964) the efficiency of aR relative to 
8LS is

a2/T 2 . In the case of Wilcoxon scores a2 /T2 - 12 o2(ff2 (x)dx)2 which is

bounded below by .864 and may be arbitrarily large, depending on F. When

F is the normal cdf the efficiency for Wilcoxon scores is .955. See

Lehmann (1975 Sections 2.4 and 4.3) for a further discussion of the efficiency.

Hence we find that the WLAD norm produces rank estimates which are generally

more efficient than the least squares estimate, at least for error distri-

butions with tails heavier than those of the normal distribution.

K



3. Testing in the Linear Model

3.1 General Linear Hypotheses

For the model (2.1) we are interested in general linear hypotheses

of the form

H : H8O - 0 versus H: HS # 0 (3.1)
o A

where Ha is a collection of q linearly independent estimable functions.

Let 0 be the (p-q) dimensional subspace of Q constrained by the hypothesis0

H6 = 0. In terms of the model (2.2) we are testing

Ho: e e Q° versus HA: a C 2 - 00" (3.2)

We will call the model (2.1), 0 e 2, the full model and the model with the

constraint 0 e 0 the reduced model.
0

3.2 Tests based on minimum distances

Given a norm 11'I on Rn, tests of (3.2) can be naturally constructed

by comparing the distances between y and the two subspaces 2 and 2 . If
0

0 8 are the best reduced and full model predictions of y, for the norm,

then the minimum distances are fly - o11 and Ily - ;11.

If the norm is '''LS then the comparison is between the square of

the minimum distances, ily - ejoL S - L - Asymptotic distribution

theory suggests standardizing this difference by an estimate of a2, the

variance of the error distribution. The usual F-test is

F LS 11Y 6 S I1Y- LS (3.3)

qaY2
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where a Y - Oj IL2/(n - p). Under H and regularity conditions, see

Huber (1973), qF has an asymptotic X2 (q) distribution. The usual small

sample test compares F with F(q, n - p)-critical values, rejecting H
LS o

at approximate level a if F > F(a, q, n - p). Note also that although

and e are derived from I1''LS the notation has been suppressed.

If the norm 11*1 R is used then a natural comparison is between the

minimum distances, I ly - ;o 1R - Ily - eli R" The asymptotic distribution

theory developed by McKean and Hettmansperger (1976) leads to standardizing

this difference by an estimate of T, (2.11), resulting in the test statistic,

1Y -eol011R - 11IY - 611IR
D = (3.4)

q(T/2)
where 7 is an estimate of T, for instance (4.2). Under H and regularity

0

conditions (see McKean and Hettmansperger (1976)) qD also has an asymptotic

x 2(q) distribution. For small samples, the level of the test seems to be

more stable if the F(a, q, n - p) critical point is used; see Hettmansperger

and McKean (1977) and Section 5 of the present paper. Hence, the test

rejects H at approximate level a if D > F(t, q, n - p).

Because of the close relationship between the inner product <*,.>

and the norm 11*1 LS the F statistic (3.2) can be written in two other

algebraically equivalent forms. Other rank tests for the linear model

can be identified with these alternative forms of the F; however, since

they are based on the norm I ' R , they are not algebraically equivalent.

We next discuss these other forms of the F-test and the corresponding

rank tests. For convenience we will assume X has full column rank.
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3.3 Tests based on the full model estimates

This form of the F statistic can be derived from (3.3) using the

Pythogorean theorem. Let Q2Q ° be the orthogonal complement of Qo in Q;
12_ l _ 12= p.L12S _ 21~y11 _21""Y1

then Ily - eoIILS -IY 2 = H p 2±yLS -IP.LYIILS = L[L[L LS'

0 0

where PN.o y denotes the projection of y onto Q2Vo. Hence

F = lla o~l
F. 1''0Y1' (3.5)

^2

From (3.1), Q2 is determined by Ha = 0. Assume X is a basis matrix for Q0

then 8 = (X'X)- x'@ and H(X'X)- 1x' = 0 for every e 0 . It then follows

that Z = X(X'X)-IH' is a basis matrix for 0'2o and P.1. y = Z(Z'Z)-iZ'y.

When the definition of Z is combined with PQQ y, (3.5) becomes

Ffi (H2)'[H(X' ]-(HB)" (3.6)q 2

This is the coordinatized version of (3.3) and expresses the numerator in

terms of the full model least squares estimates.

For the corresponding rank test, replace the least squares estimate
^ an^elc 2 "2

in (3.6) with the rank estimate R and replace by t . Standard asymptotic

theory based on (2.10) shows that q times this test statistic is approxi-

mately chi squared with q degrees of freedom. Preliminary simulations

indicate that the probability of a type I error is better controlled if

2 i2is estimated by r , (4.2), which includes the bias correction similar

to that used in least squares. The~test is carried out by referring

B = (H6R)'[H(X'X)- H']- (H6 R)
S(3.7)qT2
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to an F(a, q, n - p) critical point. In the numerator $R can be replaced

by 8(k), (4.1), the k-step rank estimate.

Bickel (1976) defined a pseudo-observation based on an M-estimate

and described how these pseudo-observations could be used in a least squares

program to yield a robust test of hypothesis; see Schrader and Hettmansperger

(1980). We now adapt this idea to the WLAD or rank estimate approach.

Given the full model estimate 0R = X0R, define the pseudo-observation
y by:

Aj +A
" = X6R + Xa (RIy - XBRI) (3.8)

A A= R + Xa+(Rly 6 eRI)

where X is a constant to be determined. Note that since a+(Rly - 6RI) E Q1

from (2.9), the least squares estimate of $ based on y is 8 . The least
^R

squares variance estimate based on y - eR is

a'- A 2 (3.9)
n-p IIv R

X2 n 2- Za
n-p 1

nf2  A

where Ea is a known constant. Hence for T as in (4.2), if we take1li

A -1 2.1/2
= T/(n Zai) (3.10)

2 A2
then a = T , the proper denominator in (3.7). In the case of Wilcoxon

A 1/2
scores, X T[(n + l)/(n - 1)]

Hence we can compute B in (3.6) quite easily, as follows: 1. find

$R (or 8R) and T, 2. construct and 3. use y in a least squares AOV program.
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The numerator of B is the appropriate line of the AOV table and the denomi-

nator is the error line. The pseudo observations also have diagnostic value

for data analysis. A plot of y against y shows the effect of "robustification"

on the data. This is illustrated in the example of Section 7.

3.4 Aligned Tests

The aligned tests are most conveniently described for the case H -

(0, I) where I is the q x q identity. The model (2.4) is partitioned as

Y M I 1 + X2B 2 + e (3.11)

where X1 and X2 are of order nx(p - q) and n x q while B and 62 are (p - q)

x 1 and q x 1 vectors, respectively. The null hypothesis (3.1) becomes Ho:

B2 = 0 where 11 is treated as a nuisance vector.

The least squares F test can be derived by first removing the effects

of the nuisance vector B1 by projecting both y and the columns of X2 onto

Qo" Hence consider P.1y = y - P2 Y and PQIX2 - X2 - PQ X2 where Py =
0 0 0 0 0

XJ(X 'X)-Ix'y. Now using P _,X2 as the design, project the vector P,,y0 0

to construct the F test for Ho: S2 = 0. The numerator in this case is the

squared length of this projection and the resulting form of the F statistic is

(PQ-y) 'X X2 X 2'P-X 2) -
1X2' (PQxY)

F 0 o 0 0 (3.12)qo2

This can be derived algebraically from (3.3) and expresses the numerator

as a quadratic form in the reduced model residuals. Draper and Smith
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(1966, Section 4.1) discuss this method for fitting a regression equation

with two independent variables as a sequence of simple regression fits.

Now let o M XIf denote the reduced model rank estimate. Hence (similar

to (2.9))
a+(Rly - 6o1) E So" (3.13)

Using the numerator in (3.12) we replace the reduced model residuals by

the reduced model signed ranks of the residuals and define

Q - [a+ (R ly - o I)]'X2 (X2'PSJa LX 2)- X2 'a
+ (Rly - 6o0)" (3.14)

0

The vector

S2 = X2 'a+(RIy - ;o0) (3.15)

is called the vector of aligned rank statistics and

Q = S2 ' (X2 'P<X 2 )-IS2  (3.16)
0

is called the aligned rank test statistic. See Hodges and Lehmann (1962).

The results of Sen and Puri (1977) when specialized to the univariate

linear model show that Q has an approximate chi squared distribution with

q degrees of freedom. Hence the asymptotic test of Ho: $2 - 0 rejects

when Q > X2 (a , q)

We next derive an equivalent rank test. From (3.13) we can replace

a+(Rly - 01) by PQla+(Rly - e 01) in (3.14). Using the matrix identity
0

PQ-IX-2 (X2 'PQ.X 2 ) - I X2 'P. PS.- P&_, (3.17)
0 0 0 O
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we can write Q in (3.16) as

Q [a+(Rly - o l)]'[P " 
- P,.]a+(RIy -61). (3.18)

0

This version of Q is introduced and discussed in detail by Adichie (1978).

In his discussion the estimate e need not be a rank estimate to obtain0

the asymptotic distribution. To our knowledge no study has been made of

the sensitivity of Q to the type of estimate used for ; . Since Q is ao

rank test it would seem most natural to use a rank estimate and under this

condition the aligned rank test (3.14) is equivalent to Adichie's test

(3.18). For the remainder of this paper the term aligned rank tests will

refer to either construction.

All four tests: (3.4), (3.7), (3.14) and (3.18) are very similar

in their asymptotic properties. They all have an asymptotic chi squared

distribution under the null hypothesis and they have the same asymptotic

efficiency. We have further shown in this section that though they are

not algebraically identical, each is closely associated with one of the

various equivalent forms of the F test. In Section 5 we consider some of

the small sample power properties via Monte Carlo simulations.

IIII,'i l I1 l -/ ,". . ... . . .. " ,-- _ ,. .. .. ' '
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4. Computation

The R-estimates, predicted values, and hence minimum distances can

be obtained by the k-step procedure discussed by McKean and Hettmansperger

(1978a). It is an algorithm based on approximating the dispersion function

Ily - XaJIJR by a quadratic function. For a general design matrix X the kth

step estimate of e is
-(k) = -(k-1) +p (k-1)a(Ry (k-));

while for the full rank case the estimate of B is

(k) i(k-1) + (k-1)(x xr-lVy - xj(k-l)i
(4.1)

- (k-1) + k-1)(XX)-lI~+(RIy - Xi(k-1)1).

In general this algorithm will not converge and, hence, to obtain fully

iterated estimates algorithms such as steepest descent must be used. The

asymptotic distribution theory for inference based on these k-step estimates,

however, is the same as that of the fully iterated estimates. Furthermore

in a simulation study by the authors (1978a), small sample results were

practically the same for estimates of 2 or 3 steps as that of the fully

iterated ones. For starting values resistant to outliers, we recommend

2. -estimates. Recent algorithms such as Barrodale and Roberts (1973) and

Bartels and Conn (1980) make il-starts computationally feasible.

(k)
Note from (4.1), that the k-step residuals, r k , can be written as

r(k) . (k-l) _ p((k-l)a+(R (k-l)))

where P is the projection transformation onto 0. Hence a convenient, and

numerically stable algorithm, is based on first obtaining a QR- decomposi-

tion of the design matrix X, using, for instance, the collection of

algorithms LINPACK by Dongara et al. (1979). A QR-decomposition results
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in an orthonormal basis for 0 from which projections can readily be formed.

Another advantage is that the design matrix X need not be of full column

rank. For fully iterated estimates, steepest descent in terms of an ortho-

normal basis is simply a search along the direction specified by

(k) _ (k-l). Finally, reduced model design matrices for natural hypotheses

of the form HO - 0 can readily be obtained using QR-decompositions; see

McKean and Schrader (1981).

A consistent estimate of T proposed by the authors (1976), (1978a), is

T (nl/2(U - L)/2Z / 2 )[n/(n - p)]1/2, (4.2)

where Z /2 is the (1 - a/2) percentile point of the standard normal distri-

bution and U and L are solutions C of the equations n- 1/2 Ea+(RIri - CI ) z

for Z - -Z /2 and Za/2' respectively. In the case of Wilcoxon scores U

and L are ordered Walsh averages of the residuals. Even in this case,

though, the equations are solved by an iterative algorithm similar to the

one discussed by McKean and Ryan (1977).

As the authors (1977) discussed, small sample corrections are necessary

for this estimation of T. One such correction is given by the term in the

brackets of (4.2) which corresponds to the usual least squares degree of

freedom correction for the estimate of variance. Another correction which

has proven useful in the Wilcoxon case is to modify the Z in the above

equations so as to eliminate the p smallest, in absolute value, ordered

Walsh averages. A similar idea was used by Hill and Holland (1977) for

a scale estimate based on Ll-residuals. The estimate of T used in Sections

5 and 7 employed both of these small sample corrections with Z 2 = 1.645.

I
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5. Monte Carlo Study

As discussed in Section 3 the different rank tests have the same

asymptotic null distribution and relative efficiency. Monte Carlo simula-

tions are needed to irvestigate their small sample behavior. Simulation

studies by the authors (1977), (1978a), (1978b) have indicated that for

the statistic D, (3.4), the probability of a type I error is quite stable

over a variety of underlying distributions. This stability is confirmed

in the study discussed below. Small sample properties of the rank test

B, (3.7), and the aligned rank tests, (3.14) and (3.18), have not previously

been investigated.

Before turning to the comparative simulation, we will briefly discuss

two recent simulations of related aligned rank tests proposed by Sen (1969)

and Adichie (1974) for testing parallelism of several regression lines.

Sen ranks within the individual data sets and avoids estimating the inter-

cept; Adichie ranks the combined data set but assumes the intercepts are

all equal and avoids estimation of the common intercept.

Lo, Simkin, and Worthley (1978) did a simulation study of these tests

of parallelism for the case of equal intercepts. The aligned rank tests

performed uniformally worse than the least squares F-test on the distribu-

tions considered. The power of the aligned tests was always low and in

some cases almost nonexistent.

Smit (1979) performed a similar simulation study. His results also

indicated that least squares generally performed better than the aligned

tests. There is, however, one glaring difference with the first study.
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In several cases the F test and Sen's test had very similar power but

Adichie's test had little or no power. A careful comparison of the two

studies yields contradictory conclusions. In the first study the aligned

rank tests behaved similarly and were inferior to the F test. In the

second, Sen's test and the F test often behaved similarly and were superior

to Adichie's test.

The aligned tests described in Section 3 were developed for the general

linear hypotheses, quite analogous to least squares, and differ from

these earlier tests. With the above studies in mind, we decided to in-

vestigate the tests discussed in Section 3 on essentially the same model

as considered by Lo, Simkin, and Worthley (1978): three regressions with

unconstrained intercepts, equal sample sizes, and uniforml' spaced x's.

We considered sample sizes of 5 and 10, hence, total sample sizes of 15

and 30. The dimension of Q2 for this design is 6; the ratios of observations

to parameters are 2.5 and 5. We label this design A.

A second parallel regression problem, design B, consists of two regres-

sions with common intercepts and x's placed at 1, 2, 3, 4, 5, 10 for the

first sample and at 7, 8, 9, 10, 11, 12 for the second. This design con-

tains a point of moderate leverage corresponding to the point 10 in the

first sample. This is a valuable point of the design and should not be

confused with points of leverage combined with discrepant observations,

see Hoaglin and Welsch (1978). Least squares and the rank tests D (3.4)

and B (3.7) are not affected by this design but, as shown below and discussed

in the next section, the aligned tests are adversely affected. The obser-

vation-parameter ratio for this design is 12 to 3. As in the first

design, we are testing for parallelism.
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In order to study the performance of these tests on both moderate and

heavy tailed error structure, we selected normal and Cauchy errors. With

Lo, Simkin and Worthley's study in mind, we also included the double

exponential distribution for design A. The normals were obtained using

the transformation proposed by Marsaglia and Bray (1964) on a pair of

uniform variates. The uniforms were generated by the algorithm UNI developed

by Gross (1976). The double exponential and the Cauchy observations were

generated in the form normal over an independent variable as noted in

Simon (1976). The tests simulated were F, (3.3); D, (3.4); B, (3.7);

and Q, (3.14). Both signed rank and rank scores were used. The results

are all based on 500 simulations.

Empirical 5% and 10% levels for the test statistics on all the designs

and distributions are displayed in Table 5.1. Least squares (3.3) and the

rank tests based on drop in dispersion (3.4) are fairly stable over almost

all the situations. The tests based on R-pseudo-observations, (3.7),

appear to be conservative for the small sample sizes in the normal model

and tend to be liberal for Cauchy errors on design A with ni  1 10 and

design B. This behavior for the statistic B on Cauchy errors confirms

similar findings on tests derived from M-pseudo-observations (Schrader and

Hettmansperger (1980)). It is also predictable in the light of robust

regression estimators which seem to have larger small sample variances than

their asymptotic counterparts for heavy tailed error structures; see Huber

(1973) and McKean and Hettmansperger (1978a). Small sample corrections

for the tests based on pseudo-observations seem to need some measure of

tail weight of the underlying error structure.

- Table 5.1 about here -
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The null levels for the aligned tests are more eratic. They are

quite liberal for the small sample size on design A. This improves some-

what for the larger sample size. For design B they seem to be conserva-

tive, especially the aligned test based on rank scores. As shown in Table

5.4, their power was adversely affected by this design; for instance,

the least squares test is as powerful on Cauchy errors as the aligned

tests based on rank scores. The aligned rank tests exhibited even worse

behavior for other designs which included points of moderate l.-verage.

A partial explanation of this behavior is found in the next section.

Simple small sample corrections, such as using F-critical values,

that would improve the behavior of the aligned tests on design A, would

be quite detrimental to their behavior on design B. Due to their sensitivity

to design, small sample corrections for the aligned rank tests appear to

be more complicated than those for the tests based on the drop in dispersion

or pseudo-observations. Corrections for the aligned tests need more in-

formation involving the design matrix.

The results of the power study for the tests at level .05 appear in

Tables 5.2 - 5.4. The alternatives were selected separately for each distri-

bution in order to achieve a reasonable range of powers. For valid compari-

sons, the empirical levels should be close to .05. Since this is true for the

least squares test and the rank test based on D, (3.4), these tests can be

compared (other than LS at Cauchy errors on design B). For all designs, least

squares dominates on normal errors, while D dominates on Cauchy errors. On

double exponential errors note that least squares is slightly more powerful

for samples of size 5, whereas D is more powerful for the samples of size 10.
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The test B based on R-pseudo-observatiofls is slightly dominated by the

test D.

-Tables 5.2 - 5.4 about her,.

When comparable (design A, n = 10, double exponential or Cauchy errors)

the power results of the aligned tests are similar to D. Certainly the

results on aligned tests are much improved over the earlier tests of

Sen (1969) and Adichie (1974) considered by the two studies mentioned

above. The adverse behavior of aligned tests on design B was noted

above. The results for the rank tests other than the aligned tests seem

to be similar for rank or signed-rank scores. Neither type of score

dominated the other.

Our general recommendation is to use the WLAD or rank estimate

*1 along with D. This approach combines the estimate which minimizes D,

a data fitting criterion, with the test that considers the reduction in

D due to fitting the various models under consideration. The asymptotic

theory and corresponding small sample adjustments combine to provide an

effectively distribution free, robust test, and a robust estimate. The

level and power of D appear quite stable over a variety of underlying error

distributions.
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6. The Effect of Leverage in the Design

In order to understand the behavior of the test statistics on the

design containing a point of moderate leverage, consider a simple model

containing two predictor variables with observations taken at the points

(xl, x2) as shown in Table 6.1. The point (0, x) is an extreme point

- Table 6.1 about here -

in the x2-direction. Let y denote the observation corresponding to (0, x).

Consider the full model Y 1 x1 + 2X2 + e, and the hypothesis H0 : a2 = 0

versus HI: a2 # 0.

If y is on the surface then it is a valuable point in determining the

fit. The reduced model residual at y will be large and its value incorporated

into F and D; Q however down weights the residuals and consequently loses

power.

In order to see this consider a perfect model: Y = Xi + X2 + 0; that

is all the points lie on the surface. Since the denominators of F and D

are then zero, we will only consider their numerators. A straight forward

calculation shows

33 + 20)2 (6.1)F 10(3x2 + 20) .1

33.78x + 18.89) 2 6.2)

10(3xz + 20)

In computing Q we supposed that y > I so that the reduced model residual

has rank 10. When y is on the surface we have y = x. As x increases, the

leverage increases, F also increases but Q decreases! In fact Q may

7-
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decrease below the critical value and fail to detect H: 1 2 >0. The

formulas (6.1) and (6.2) continue to hold when y is not on the surface.

In (4.2) we see that Q is only dependent on y through the rank. Again

when y - x since the full model fit is perfect, the full model dispersion

is 0 and D only depends on the reduced model dispersion. Now for the

example, when y -x and x > 0, the numerator of D is (for rank scores),

D - 2(5.67 + 1.42y) (6.3)

Here x does not enter the formula since it does not appear in the reduced

model. Note that D increases with y as the leverage increases.

This simple example provides some explanation for the adverse effect

of moderate leverage on aligned tests noted in the simulations. It further

suggests that the other tests will not be so effected.

Li1-
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7. An Example

We consider a 3 x 4 factorial experiment discussed by Box and Cox

(1964). An experiment was carried out on 48 animals to study the relative

effectiveness of 3 poisons and 4 treatments. There were 4 animals at each

poison x treatment combination and the data consists of the 48 survival

times. The data is reproduced in Table 7.1

-Table 7.1 about here -

The least squares AOV is given in Table 7.2.

- Table 7.2 about here -

Note that the F test for interaction fails to achieve significance at

the 5% level. A glance at a plot of the cell means shows that there are

crossing means in Poisons 1 and 2 while Poison 3 is almost indifferent to

which treatment is applied. These sorts of patterns are highly suggestive

of interaction. See Brown (1975). If we plot the standardized full model

residuals against the full model predicted values, a fan shaped plot appears.

See Figure 7.1.

-Figure 7.1 about here -

There is clear heterogeneity of cell variances and the four circled observa-

tions are noted for their large standardized residual. Note the residuals

were standardized by dividing by the pooled estimate of their standard

deviations.

We now consider how a parallel, robust analysis based on the ranks of

the residuals can enhance the data analysis. We will use Wilcoxon scores.
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A robust AOV table based on (3.4) is shown in Table 7.3.

-Table 7.3 about here -

Note the test for interaction is now significant at the 5% level.

The pseudo-observations (3.8) provide some insight into how the rank

tests are operating on the data. In Figure 7.2 we plot the pseudo-observations

against the actual observations. The 4 observations with large standardized

residuals are marked. Notice how they are "brought back in."

- Figure 7.2 about here -

In Figure 7.3 we plot the standardized residuals of the pseudo-obser-

vations against the robust predicted values. There are no longer any extreme

standardized residuals.

-Figure 7.3 about here -

Further, it can be seen how the ranking process is working to equalize

the cell standard deviations. Compare Figures 7.1 and 7.3.

Table 7.3 was based on the drop in dispersion (3.4). If the pseudo-

observations were used with a least squares program then a similar table

based on (3.7) could be constructed. The results are quite similar for the

- I two approaches.



26

Adichie, J. N. (1974). "Rank Score Comparison of Several Regression
Lines". Ann. of Statist., 2, 396-402.

Adichie, J. N. (1978). "Rank Tests of Subhypotheses in the General
Linear Regression." Annals of Statist., 6, 1021-1026.

Arnold, S. (1981). The Theory of Linear Models and Multivariate Analysis.
New York: John Wiley and Sons.

Barrodale, I. and Roberts, F. D. K. (1974). Algorithm 478: Solution of
an overdetermined system of equations in the Ll norm. Comm. Assoc.
Comput. Mach., 17, 319-20.

Bartels, R. H. and Conn, A. R. Linearly constrained discrete 11 problems.
Trans. Math. Soft., 6, 594-608.

Bickel, P. J. (1964). "On Some Alternative Estimates for Shift in the
p-Variate One Sample Problem," Ann. Math. Statist.,
35, 1079-1090.

Bickel, P. J. (1976). Another look at robustness: A review of reviews
and some new developments (reply to discussant). Scand. J. Statist.,
3, 167.

Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations (with
discussion). 3. R. Statist. Soc., B2, 211-52.

Brown, M. B. (1975). Exploring interaction effects in the ANOVA. Appl.
Statist. 24, 288-98.

Dongara, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1979).

LINPACK Users Guide. Philadelphia: Society for Industrial and
Applied Mathematics.

Draper, N. R. and Smith, H. (1966). Applied Regression Analysis. New
York: John Wiley and Sons.

Gross, A. M. (1976). Portable random number generation. Unpublished
memorandum, Bell Laboratories, Murray Hill, NJ.

Hampel, F. R. (1974). The influence curve and its role in robust esti-
mation. J. Amer. Statist. Assoc.,69, 383-93.

Hettmansperger, T. P. and McKean, J. W. (1977). A Robust Alternative
Based on Ranks to Least Squares in Analyzing Linear Models.
Technometrics, 19, 275-284.

Hill, R. W. and Holland, P. W. (1977). Two robust alternatives to least-
squares regression. J. Am. Statist. Assoc., 72, 828-33.



27

Hoaglin, D. C. and Welsch, R. E. (1978). The Hat Matrix in Regression
and ANOVA. The American Statistician, 32, 17-22.

Hodges, J. L., Jr. and Lehmann, E. L. (1962). Rank methods for combination
of independent experiments in analysis of variance. Ann. Math. Statist.,
33, 482-497.

Hodges, J. L., Jr. and Lehmann, E. L. (1963). Estimates of location based
on rank tests. Ann. Math. Statist., 34, 598-611.

Huber, P. J. (1973). "Robust Regression: Asymptotics, Conjectures and
Monte Carlo," Ann. Statist., 1 799-821.

Jaeckel, L. A. (1972). Estimating regression coefficients by minimizing
the dispersion of the residuals. Ann. Math. Statist., 43, 1449-58.

Jureckova, J. (1971). Nonparametric estimate of regression coefficients.
Ann. Math. Statist., 42, 1328-38.

Kraft, C. H. and Van Eeden, C. (1972). Linearized rank estimates and
signed-rank estimates for the general linear hypothesis. Ann. Math.
Statist.,43, 42-57.

Lehmann, E. L. (1975). Nonparametrics: Statistical Methods Based on
Ranks. San Francisco: Holden-Day, Inc.

Lo, L. C., Simkin, M. E. and Worthley, R. E. (1978). A small sample
comparison of rank score tests for parallelism of several regression
lines. Journal of Am. Statist. Assoc., 73, 666-669.

Marsaglia, G. and Bray, T. A. (1964). A convenient method for generating
normal variables. SIAM Rev., 6, 260-4.

McKean, J. W. and Hettmansperger, T. P. (1976). "Tests of Hypothesis in
the General Linear Model Based on Ranks," Comm. in Statist., A5(8),
693-709.

McKean, J. W. and Hettmansperger, T. P. (1978a). Statistical Inference
Based on Ranks. Psychometrika, 43, 69-79.

McKean, J. W. and Hettmansperger, T. P. (1978b). A Robust Analysis of
the General Linear Model Based on One Step R-estimates. Biometrika,
65, 571-579.

McKean, J. W. and Ryan, T. A., Jr. (1977). An algorithm for obtaining
confidence intervals and point estimates based on ranks in the two
sample location problem. Trans. Math. Software, 3(2), 183-185.

McKean, J. W. and Schrader, R. M. (1980). The Geometry of Robust Pro-
cedures in Linear Models. JRSS(B), 42, 366-371.

McKean, J. W. and Schrader, R. M. (1981). The Use and Interpretation of
Robust Analysis of Variance. Proceedings of ARO Conference on Modern
Data Analysis, New York: Academic Press.



28

Schrader, R. M. and Hettmansperger, T. P. (1980). Robust Analysis of
Variance Based Upon a Likelihood Ratio Criterion. Biometrika, 67,
93-101.

Sen, P. K. (1969). On a Class of Rank Order Tests for the Parallelism
of Several Regression Lines, Ann. Math. Statist., 40, 1668-1683.

Sen, P. K. and Purl, M. L. (1977). Asymptotically Distribution-Free
Aligned Rank Order Tests for Composite Hypotheses for General
Multivariate Linear Models, Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete, 39, 175-186.

Simon, G. (1976). Computer simulation swindles, with applications to
estimates of location and dispersion. JRSS(C), 25, 266-74.

Smith, C. F. (1979). An Empirical Comparison of Several Tests for
Parallelism of Regression Lines, Comm. in Statist. (B), 8, 61-74.



TABLE 5.1

EMPIRICAL LEVELS

PARALLEL DESIGN A(n1 - 5)

NOMINAL LS D B Q
DIST LEVEL SR R SR R SR R

05 050 036 036 032 030" 076+  056
NORMAL 10 098 080 070 056- 048- 182k+  142 +

05 060 048 044 040 046 094+  076+

DEXP 10 100 096 082 074- 078 178+  148e

05 042 044 036 060 050 098 068
CAUCHY 10 114 108 082 096 086 200+  160

PARALLEL DESIGN A(n i - 10)

05 048 058 056 046 042 064 058
NORMAL 10 090 098 094 094 082 126 +  120

05 038 050 048 058 050 050 034
DEXP 10 074- 098 094 090 088 120 100

05 062 076 062 094 096 068 06407 + 094. 096+  4

CAUCHY 10 116 138 128' 154* 138 142+  132

PARALLEL DESIGN B(ni , 5)

05 048 034 032 030 028 034 016
10 088 072 068 060 056 100 090

05 092 062 046 104 102 030 024
CAUCHY 10 110 122 110 128+  130+  102 078

Note: A -(+) is attached if the empirical level is below(above) (.031, .070) or
(.077, .123), the 95% intervals around .05 and .10 respectively.



TABLE 5.2

EMPIRICAL POWER FOR .05 TESTS

PARALLEL DESIGN A(n~ 5)

LS D B Q
SR R SR R SR + R

NORMAL NULL 050 036 036 032 030 076~ 056

1 126 098 084 076 068 226 160

2 372 298 276 224 214 462 380

ALTS 3 646 592 546 472 452 724 626

4 976 942 930 870 860 986 968

5 1.000 998 1.00 998 1.00 1.00 1.00

DEXP NULL 060 048 044 040 046 094+ 076+

1 094 072 070 058 054 168 114

2 220 192 174 156 142 324 262

ALTS 3 406 376 340 298 284 556 472

4 782 758 730 678 668 860 802

5 974 972 958 930 930 980 962

CAUCHY NULL 042 044 036 060 050 098 + 068

1 062 088 076 080 080 202 136

2 218 300 278 244 230 476 394

ALTS 3 376 598 582 524 504 692 610

4 536 762 740 740 716 788 748

5 598 814 800 794 786 832 786



TABLE 5.3

EMPIRICAL POWER FOR .05 TESTS

PARALLEL DESIGN A(n~ 10)

LS D B Q
NORMAL SR R SR R SR R

NULL 048 058 056 046 042 064 058

1 078 082 076 066 064 096 086

2 450 432 398 364 374 476 452

ALTS 3 888 884 858 836 832 904 874

4 994 990 990 990 984 990 990

5 1.000 998 998 998 998 998 998

DEXP NULL 042 050 048 058 050 050 034

1 134 164 150 148 142 176 152

2 424 530 504 486 476 536 506

3 772 832 814 784 800 838 794

4 986 984 984 990 990 988 986

5 998 998 996 1.000 1.000 994 992

CAUCHY NULL 062 076 + 062 094 + 096 + 068 064

1 070 096 086 126 112 124 090

2 146 400 386 376 380 410 390

3 248 738 734 744 734 710 678

4 380 894 892 904 902 844 824

5 480 958 960 964 966 912 908



TABLE 5.4

EMPIRICAL POWER FOR .05 TESTS

PARALLEL DESIGN B

LS D B Q
SR R SR R - SR R-

NORMAL NULL 048 034 032 030 028 034 016

1 252 196 178 154 150 204 124

2 624 486 424 422 428 448 328

ALTS 3 894 790 760 760 764 684 546

4 990 974 954 936 930 842 718

5 996 988 986 982 974 884 768

CAUCHY NULL 092k 062 046 104 102 030 024

1 350 460 428 410 406 430 300

2 634 812 780 774 772 720 572

ALTS 3 696 858 852 846 844 772 660

4 750 902 884 886 888 818 722

5 798 926 922 924 926 868 778



TABLE 6.1

DESIGN WITH HIGH LEVERAGE POINT

x -1 -1 -1 1 1 1 0 0 0 0

-1 0 1 -1 0 1 -1 0 1 x



r

TABLE 7.1

Survival times (unit, 10 hr) of animals in a 3 x 4 factorial experiment

Treatment

Poison

A B C D

1 031 082 043 045
045 110 045 071
046 088 063 066
043 072 076 062

II 036 092 044 056

029 061 035 102
040 049 031 071
023 124 040 038

I1 022 030 023 030
021 037 025 036
018 038 021 031
023 029 022 033

:I.



TABLE 7.2

AOV

SOURCE df SS MS F 5% Pt.

TREAT. 3 .92 .31 15.5 2.88

POISON 2 1.03 .52 26.0 3.28

T x P 6 .25 .04 2.0 2.38

ERROR 36 .80 .02

TOTAL 47 3.00

p.t

1



TABLE 7.3

t "AOV"

SOURCE df D D/df F 5% Pt.
R

TREAT. 3 2.9 .97 20.9 2.88

POISON 2 3.6 1.8 38.8 3.28

T x P 6 .85 .14 3.1 2.38

ERROR 36 .046

ERROR T ̂/2 IS COMPUTED FROM THE FULL MODEL

.. . ...... . .. . .. . . .- -1 1 I ,



FIGURE 7.1

STANDARDIZED RESIDUALS VS. PREDICTED VALUES
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FIGURE 7. 2

PSEUDO-OBSERVATIONS VS. OBSERVATIONS
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FIGURE 7.3

STANDARDIZED RESIDUALS VS. PREDICTED VALUES

BASED ON PSEUDO-OBSERVATIONS
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